导师与研究领域、方向:
简要履历
陈语谦,北京大学科学智能(AI for Science, AI4S)中心主任。分别在台湾大学,麻省理工学院,哈佛大学学习和工作。曾任麻省理工学院博士后、研究员,哈佛大学研究员、匹兹堡大学教授、北京大学客座教授、浙江大学光彪讲座教授、中山大学智能工程学院教授智能医疗中心。主任长期从事人工智能在药物、医学、化学、生物上的研究,累计发表Nature 子刊、Cell子刊等期刊和会议论文300余篇。累计被引9800余次,H因子为51。在2020-2023年入选Elsevier中国高被引学者榜单(计算机学与技术领域)。 2021-2023年入选了全球学者学术影响力排行榜,2018-2023年入选了全球World’s Top 2% Scientists, 2020-2023连续入选Highly Cited Researchers - Clarivate highly cited candidate。
AI+X实验室简介: 利用人工智能技术在其他学科的应用。
人才培养:实验室注重算法和编程等专业技能
对研究生的期待:如果您探讨科学时,眼睛有光,请您来找我就對了!
主要研究方向:
人工智能应用、图像视频处理、自然语言处理、元宇宙数字人
荣誉与获奖
2004 Best Teaching Award
2007 Young Scholar Award, Biochemical Engineering
2008 Outstanding research Award
2009 Outstanding research Award
2009 MIT 100 international young innovator awards
2010 She Yan-Ping Best Paper Award
2012 Best paper from MIT Koch Institute
2013 MIT Young Scientist Award
2014 Outstanding research Award
2015 Best Teaching Award
2016 Best Teaching Award
代表性论文
详细论文请参考 https://orcid.org/0000-0001-9213-9832
Recent Years Referee Papers (2019~)
Haohuai He#, Guanxing Chen#, Calvin Yu-Chian Chen*, NHGNN-DTA: A Node-adaptive Hybrid Graph Neural Network for Interpretable Drug-target Binding Affinity Prediction,Bioinformatics, 2023, 39(6), btad355
Qiujie Lv, Jun Zhou, Ziduo Yang, Haohuai He, Calvin Yu-Chian Chen*, 3D Graph Neural Network with Few-Shot Learning for Predicting Drug-Drug Interactions in Scaffold-based Cold Start Scenarios, Neural Networks, 2023, 165, 94-105
Weihe Zhong#, Ziduo Yang#, Calvin Yu-Chian Chen*, Retrosynthesis prediction using an end-to-end graph neural network for molecular graph editing, Nature Communications, 2023, 14, 3009
Qiujie Lv, Guanxing Chen, Haohuai He, Ziduo Yang, Lu Zhao, Kang Zhang, Calvin Yu-Chian Chen*, TCMBank-the largest TCM database provides deep learning-based Chinese-Western medicine exclusion prediction, Signal Transduction and Targeted Therapy, 2023, 8, 127
Qiujie Lv, Calvin Yu-Chian Chen*, Meta Learning with Graph Attention Networks for Low Data Drug Discovery, IEEE Transactions on Neural Networks and Learning Systems. 2023, https://doi.org/10.1109/TNNLS.2023.3250324
Zhenchao Tang, Guanxing Chen, Hualin Yang, Weihe Zhong, Calvin Yu-Chian Chen*, DSIL-DDI: a domain-invariant substructure interaction learning for generalizable drug-drug interaction prediction, IEEE Transactions on Neural Networks and Learning Systems. 2023, https://doi.org/ 10.1109/TNNLS.2023.3242656
Ziduo Yang#, Weihe Zhong#, Qiujie Lv, Calvin Yu-Chian Chen*, Learning size-adaptive molecular substructures for explainable drug-drug interaction prediction by substructure-aware graph neural network, Chemical Science, 2022, 13, 8693 - 8703
Haohuai He#, Guanxing Chen#, Calvin Yu-Chian Chen*, 3DGT-DDI: 3D graph and text based neural network for drug-drug interaction prediction, Briefings in Bioinformatics, 2022, 23(3), 1–15
Weining Yuan, Guanxing Chen, Calvin Yu-Chian Chen*, FusionDTA: attention-based feature polymerizer and knowledge distillation for drug–target binding affinity prediction, Briefings in Bioinformatics, 2022, 23, 1-13
Ziduo Yang#, Weihe Zhong#, Lu Zhao, Calvin Yu-Chian Chen*, MGraphDTA: Deep Multiscale Graph Neural Network for Explainable Drug-target Binding Affinity Prediction, Chemical Science, 2022, 13, 816-833
Xuedong He, Calvin Yu-Chian Chen*, Learning Object-Uncertainty Policy for Visual Tracking, Information Sciences. 2022, 582, 60-72.
Qiujie Lv#, Guanxing Chen#, Lu Zhao#, Weihe Zhong, Calvin Yu-Chian Chen*,Mol2Context-vec: learning molecular representation from context awareness for drug discovery, Briefings in Bioinformatics,2021, 22, 6, 1-14
Ziduo Yang#, Lu Zhao#, Shuyu Wu, Calvin Yu-Chian Chen*, Lung Lesion Localization of COVID-19 from Chest CT Image: A Novel Weakly Supervised Learning Method, Journal of Biomedical and Health Informatics, 2021, 25, 6, 1864-1872.